درباره پل و پل سازی چه باید بدانید؟
پل یک سازه است که برای عبور از موانع فیزیکی از جمله رودخانه ها و دره ها استفاده می شود. پلهای متحرک نیز جهت عبور کشتی ها و قایق های بلند به نحوی ساخته میشوند که آنها بتوانند از زیر پل عبور کنند .
تقسیم بندی انواع پل از نظر مصالح ( متریال پل )
پلهای چوبی:
این پلها معمولا” به شکل قوسی، با تیرهای مشبک و یا تیرهای حمال ساخته شده و در حال حاضر استفاده از آنهابه صورت موقتی می باشد.
پلهای سنگی:
با توجه به مقاومت مناسب فشاری مصالح سنگی، بسیاری از پلهای طاقی از این مصالح ساخته شده اند.نظر به کمبود افراد سنگ کار و زمان نسبتا طولانی لازم برای تهیه مصالح و اجرای سازه، امروزه استفاده از این پلها محدود می باشد.
پلهای بتنی:
در بسیاری از پلهای طاقی شکل، در حال حاضر از بتن، با توجه به مقاومت فشاری مطلوب آن به جای سنگ استفاده می شود.
پلهای بتن مسلح:
با توجه به روش اجرا و نحوه بتن ریزی، پلهای بتن مصلح را می توان از مقاطع مختلف و با اشکال دلخواه ساخت. با وجود این استفاده از مقاطع ساده در جهت کاهش بهای قالب بندی همواره مورد نظر است.در بعضی از حالات
استفاده از سیستم پیش ساختگی باعث حذف اجزاء نگهدارنده قالبها و در نتیجه صرفه جوئی قابل ملاحظه می شود.
پل های بتن پیش تنیده:
با پیشرفت این تکنیک، به تدریج در دامنه وسیعی از ابنیه فنی،پلهای بتن پیش تنیده جایگزین پلهای فلزی و پلهای بتن مسلح شده اند. بدین ترتیب با صرف هزینه کمتر، پلهای با دهانه بزرگ ساخته می شوند. از طرف دیگر استفاده
از این مصالح امکان به کارگیری تکنیک های جدید پل سازی را می دهد.
پل های فلزی:
این پلها به اشکال مختلف، با تیرهای حمال معمولی یا تیرهای مشبک فولادی، با قوس یا قالبهای فلزی، نورد شده از ورق و المانهای اتصالی ساخته شده اند. در ساخت این پلها گاهی نیز از آلیاژهای سبک یا مقطع مرکب استفاده
می گردد.
استفاده از فولاد در ساخت پلهای فلزی از قرن گذشته شروع و با عنایت به مقاومت کششی و فشاری مطلوب این مصالح در سطح وسیع متداول گردید.باتوجه به فزونی بهای تولید، معمولاً نیمرخهای فولادی دارای ضخامت ناچیز
بوده و در نتیجه علاوه بر مسئله زنگ زدن و خوردگی، خطر بروز ناپایداری های الاستیک نیز همواره موجود می باشد، از طرف دیگر نظر به اینکه با افزایش طول دهانه وزن مرده پلها به سرعت افزایش می یابد،
پوشش پلهای فلزی :
پوشش پلهای فلزی را می توان از چوب مصالح سنگی بتن مسلح و یا از ورقهای فلزی انتخاب نمود. استفاده از چوب برای پوشش پلها در زمانهای بسیار قدیم رایج بوده اما امروزه به ندرت مورد استفاده قرار می گیرد.
پهمچنین در طرحهای جدید از پوشش مصالح سنگی نیز به علت وزن زیاد آن، کمتر استفاده می شود در این راه حل تیرهای حمال طولی پل بوسیله قوسهائی از آجر و مصالح سنگی به هم متصل می شوند.
پوشش بتن مسلح:
این پوشش از یک دال بتن مسلح که روی تیرچه های طولی و تیرهای عرضی پل تکیه نموده تشکیل یافته است.پوشش بتن مسلح مقاومت و صلبیت لازم را به سازه داده و از نظر اجرائی نیز آسان و بسیار متداول می باشد.
پوشش فلزی:
یک نوع از این پوششها از یک سری صفحات فلزی که بوسیله بتن مسلح پوشیده شده و روی بال فوقانی تیرچه طولی جوش شده اند تشکیل شده است ضخامت کل حاصله معمولاً ضعیف (بین ۱۰تا ۲۰ سانتی متر ) است.
یکی دیگر از انواع پوششهای فلزی متداول دال ارتوتروپ است این پوشش از یک صفحه فلزی که در جهت عمودی بوسیله ورقهای ساده یا جعبه ای تقویت شده تشکیل یافته است، صفحه فلزی نقش بال فوقانی تیرها رابه عهده
داشته و ضمن شرکت در مقاومت خمشی بارهای موضعی حاصل از چرخ وسائل نقلیه رانیز تحمل می کند.
ضخامت آن معمولاً حدود ۱۲ میلی متر (برای جان جعبه ای )تا ۱۴ میلی متر(برای جان ساده)می باشد. دال ارتوتروپ در مجموع روی اجزاء اصلی پل (تیرهای طولی و عرضی )تکیه نموده است.
طبقه بندی پلهای فلزی:
پلهای فلزی را می توان با توجه به نوع سیستم باربر به شرح زیرطبقه بندی نمود:
• پل باتیرهای حمال
• پل قوسی
• پل با کابلهای باربر
پل با تیرهای حمال :
این پلها از متداول ترین انواع مورد استفاده برای دهانه های متوسط (تا۲۵۰ متر)می باشند . تیرهای حمال معمولا به صورت شبکه های فلزی مقاطع جعبه ای یا تیرهای مرکب تو پر ساخته شده و تغییر شکل بسیار محدودی خواهند
داشت. شبکه های فلزی معمولآ سبک بوده اما با توجه به خصوصیات ظاهری آنها ،کمتر در مناطق شهری مورد استفاده قرار می گیرند.در حالت کلی این پلها را نیز می توان به شرح زیر تفکیک نمود:
پل با تیرهای حمال جانبی :
در این حالت تیرهای حمال جانبی معمولآ از شبکه های فلزی تشکیل شده و اجزاء اصلی باربر تابلیه می باشند. در شرایطی که عرض پل محدود باشد ( کمتر از۱۴ متر ) می توان از این سیتستم استفاده نمود.
پل با تیر های حمال تحتانی:
در این حالت تیرهای حمال عمومآاز نوع تیرهای مرکب با جان تو پر ( که از چند ورق فلز با اتصال پیج پرچ یا جوش تشکیل شده اند ) می باشند. تیرهای حمال با ارتفاع ثابت یا متغیر ساخته شده و در نتیجه ضمن حصول منظره
مناسب صرفه جوئی مهمی نیز در مصرف مصالح خواهد شد. همچنین در بعضی شرایط می توان سبستم متشکل از تیرها یا حمال تحتانی را با یک مقطع جعبه ای جایگزین نمود.
پل قوسی:
پل قوسی، پلی است با تکیه گاه های انتهائی در هر طرف، که شکلی نیم دایره مانند دارد. پلی که از رشته ای از قوسها تشکیل شده باشد، پل دره ای نامیده می شود. پل قوسی ابتدا توسط یونانی ها و از سنگ ساخته شد.
بعدها، رومیان باستان از ملات در پل های قوسی خود استفاده کردند.
با توجه به اصول مقاومت مصالح، شعاع قوس وابعاد این پلها را طوری انتخاب می کنند که بارهای قائم وارده تبدیل به یک نیروی فشاری در امتداد قوس شود. بنا براین در مناطقی با کیفیت خاک مناسب،می توان دهانه های بزرگ (
تا حدود۵۰۰متر) را با پلهای قوسی طی نمود.
پل ترکه ای:
در این پلها،تابلیه به صورت یک صفحه صلب از یک طرف روی پایه های کناری (کوله ها) و دو پایه بلند میانی و از طرف دیگر به طور الاستیک روی کابلهای مورب تکیه نموده است. این کابلها در تمام طول پل گسترش می بابند بار
وارده را به پایه های بلند میانی منتقل می نمایند. کابلهای ذکر شده را می توان در دو صفحه قائم و به طور موازی در دو طرف تابلیه قرار داده و یا در جهت عرضی نیز به طور مورب و در امتداد محورطولی پل به پایه میانی متصل
نمود.
همچنین در بعضی شرایط می توان از یک مجموعه کابل که در امتداد محور طولی پل قرار می گیرند استفاده نمود.
پایه های میانی پل به شکل I ، A یا H طرح شده و معمولآ از فولاد یا بتن مسلح می باشد،پلهای ترکه ای به تعداد زیاد و تا دهانه ۵۰۰ متر ساخته شده اند.
پل معلق:
در این پلها نیز تابلیه به صورت یک صفحه صلب روی پایه های کناری و میانی تکیه نموده است .
برای نگهداری و بالا بردن عمر مفید پل چه اقداماتی باید انجام داد؟
با توجه به مخارج سنگین انجام شده برای اجرای ابنیه بتنی،مسئله نگهداری دقیق این سازه ها در برابر آب و باد دو یخبندان از اهمیت خاصی بر خوردار است.
در مناطقی که بستر رودخانه سست بوده و در اثر طغیان آب امکان شسته شدن داشته باشد باید وضعیت آن را در اطراف پل بعد از طغیانهای مختلف مورد برسی قرار داد تا با تدابیر مختلف از خالی شدن خاک اطراف پی ها و در
نتیجه تخریب پایه ها جلوگیری شود. لایه عایق کاری و آسفالت کف جاده باید طوری انجام شود که از نفوذ و باقی ماندن آب در جسم پل جلوگیری شود.
بعد از پایان ساختمان پل و قبل از تحت سرویس قرار گرفتن،المانهای مختلف آنرا باید به دقت مورد بازدید قرار داد تا مشخص شود تحت بارهای دائمی و دستگاههای ساخت،تغییر شکل ها و ترک های پیش بینی نشده در آن ایجاد
نشده باشد، همچنین بعد از آزمون بار گذاری که تحت شدید ترین بارگذاری ممکنه در طول دوره سرویس قرار می گیرد، باید کلیه تغییر شکلهای ایجاد شده و فلش مقاطع بحرانی، ترک های احتمالی، نشست پایه ها، تغییر فرم
دستگاههای تکیه گاهی و اتصالات مختلف به دقت مورد برسی قرار گیرند.
در طول دوره بهره برداری نیز در زمانهای مشخص باید قسمتهای مختلف پل مورد بازدید قرار گیرند به عنوان مثال:در پلهای فلزی که احتمال از بین رفتن اتصالات پیچ و جوش، زنگ زدن المانها و خوردگی آنها و بروز نا پایداریهای
الاسیتک موجود است. این بازدیدها باید به طور مداوم و حداقل هر پنج سال یکبار انجام شده و برای جلو گیری از تخریب قطعات، آنها را با مواد مناسب پوشانید. همجنین در مورد پلهای بتن پیش تنیده شده وضع دستگاههای
مهارتی و کشش کابلها مورد بررسی قرار گرفته و با انجام عمل تزریق به نحو مناسب، از زنگ زدگی کابلها جلوگیری به عمل آید.
از عبور سربارهای غیر مجاز که در طرح ومحاسبه قطعات پل در نظر گرفته نشده اند،اکیدآ جلوگیری شود.
ساختار کار پل ها:
سه نوع اصلی از پلها موجودند:
پل تیری پل قوسی پل معلق
تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه, فاصله ای است بین پایه های ابتدایی و انتهایی پل, اعم از اینکه آن ستون, دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از ۲۰۰ پا (۶۰متر) تجاوز نمی کند.
در حالی که یک پل قوسی مدرن به ۸۰۰ تا ۱۰۰۰ پا (۲۴۰ تا ۳۰۰ متر) همو می رسد. پل معلق نیز تا ۷۰۰۰ پا طول دارد.چه عاملی سبب می شود که یک پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یک
معلق بتواند تقریباً تا ۷ برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید که بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و کششی تاثیر می پذیرند.
نیروی فشاری :
نیرویی است که موجب فشرده شدن و یا کوتاه شدن چیزی که بر روی آن عمل می کند می شود.
نیروی کششی :
نیرویی است که سبب افزایش طول و گسترش چیزی که بر روی آن عمل می کند, می گردد.
در این زمینه می توان از فنر به عنوان یک مثال ساده نام برد. زمانی که آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیک می کنیم, در واقع ما آن را را متراکم می سازیم. این نیروی تراکم یا فشاری موجب کوتاه شدن
طول فنر می شود. و نیز اگر دو سر فنر را از یکدیگر دور سازیم, نیروی کششی در فنر ایجادشده, طولفنر را افزایش می دهد.نیروی فشاری و کششی در همه پل ها وجود دارند و وظیفه طراح پل این است که اجازه ندهد این نیروها
موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد که نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه کند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی,پخش و یا انتقال آنهاست. پخش کردن
نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانکه هیچ تک نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمرکز نباشد. انتقال نیرو به معنی حرکت نیرو از یک منطقه غیر مستحکم به منطقه مستحکم است,
ناحیه ای که برای مقابله با نیرو طراحی شده و منظور گردیده است. یک پل قوسی مثال خوبی برای پراکندگی است حال آنکه پل معلق نمونه ای بارز از انتقال نیروست.
پل های تیری :
یک پل تیری, اساساً یک سازه افقی مستحکم است که بر روی دو پایه نصب شده است و این پایه ها, هر یک در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر که بر روی پل اعمال می شود, مستقیماً توسط پایه ها
تحمل می شوند.
فشار : نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود که بخش بالایی عرشه کوتاه تر گردد.
کشش : برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی کششی در بخش پایینی عرشه پل منجر می شود. این کشش موجب افزایش طول در بخش پایینی پل می شود.
پراکندگی : بسیاری از پلهای تیری که شما می توانید آنها را در بزرگراهها بیابید, برای تحمل بار از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی که تیر دارد محاسبه می شود. با افزایش
ارتفاع تیر, به مقدار مصالح بیشتری برای پراکنده کردن کشش مورد نیاز است.
طراحان پل برای ایجاد تیر های بلند از شبکه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحکام داده و توانایی آن را در پخش کردن نیروی فشاری یا کششی افزایش می دهد. زمانی که تیر شروع به متراکم شدن می کند,
این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا, پل تیری در میزان طول خود محدود است. با افزایش طول آن اندازه خرپا نیز می بایست افزایش یابد تا زمانی که خرپا به نقطه می رسد که دیگر نمی تواند وزن
خود را تحمل کند.
انواع پل های تیری :
پل های تیری به سبک های بسیار زیادی ساخته می شود. نوع طراحی, مکان و چگونگی ساخت یک خرپا, تعیین کننده نوع یک خرپاست. در بدو انقلاب صنعتی, احداث پلهای تیری در ایالات متحده با سرعت
توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند.
پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یکی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو»۱ بود که در سال ١٨۴٠
توسط «ویلیام هاو»۲ طراحی و ابداع شد.شهرت ابداع جدید وی در طرح خرپایش نبود, چرا که مشابه طرح kingpost بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب طرح او بود که مورد توجه
قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می کنند.
مقاومت خرپا :
یک تیر به تنهایی هرگونه فشردگی یا کشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین کشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و کشش کمتری وجود دارد.اگر تیر
طوری طراحی شود که بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح کمتری مصرف شود, بهتر خواهد توانست نیروهای کششی یا فشاری را تحمل کند. ( در توضیح می توانیم بگوییم که تیر های I شکل مستحکم
تر از تیر های مستطیلی ساده است).مرکز تیر از عضو های مورب خرپا تشکیل شده طوری که بالا و پایین خرپا نشان دهنده بالا و پایین تیر است.
با نگرش به خرپا به این شیوه ما قادریم ببینیم که بالا و پایین تیر مصالح بیشتری نسبت به مرکز آن مصرف می کند(به این دلیل که مقوای چین دار خیلی مستحکم است).در اضافه به مطالب فوق در مورد تاثیرات خرپا, علت دیگری
نیز وجود دارد دالّ بر اینکه چرا خرپا مستحکم تر از تیر است: یک خرپ توانایی پخش کردن نیرو را دارد. خرپا طوری طراحی شده است که به دلیل داشتن تعداد زیادی از مثلث ها _که به طور معمول در آن مورد استفاده قرار می گیرد_
هم می تواند یک سازه بسیار مستحکم ایجاد کند و هم کار انتقال نیرو را از یک نقطه به منطقه وسیعی انجام دهد.
پل قوسی :
یک پل قوسی سازه ای است به شکل نیم دایره که در هر طرف آن نیم پایه (پایه های جناحی) قرار دارد. طراحی قوس طوری است که به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می کند.
فشار :
پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود.
کشش :
کشش در یک قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون, به طور قابل ملاحظه ای تاثیرات کشش را در قسمت زیرین قمس کاهش می دهد. هرچند با زیاد شدن
زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی کششی نیز در آن افزایش می یابد.همانطور که اشاره شد, شکل قوس به تنهایی موجب می شود که وزن مرکز عرشه پل به پایه های جناحی منتقل شود. مشابه
پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت.
انواع پلهای قوسی:
پراکندگی :
انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان»۳ , «باروک»۴ و «رنسانس»۵ وجود دارند که همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یکسانند. میزان مقاومت این پلها به شکل
هندسی آنه بستگی دارد. یک پل قوسی احتیاج به هیچگونه تکیه گاه یا کابل ندارد. و قوسهایی که از سنگ ساخته شده است حتی نیازی به ساروج یا ملاط نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی(پل آب بر) ساخته
اند که هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید.
پل معلق پلی است که توسط کابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی که مانع وجود داشته باشد) کشیده شده اند و عرشه توسط این کابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل
دارند که کابل ها آن را می کشند. بنابراین برج ها بیشترین وزن جاده را تحمل می کنند.
نیروی فشاری :
نیروی فشاری عرشه پل معلق را به سمت پایین متراکم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا که این یک پل معلق است, کابلها این نیروی فشاری را از برجها گرفته و آن را در بینخود پراکنده می
کنند. و آن را به زمین منتقل می کنند, جایی که آنها محکم بسته شدند.
کشش :
کابلهایی که میان دو لنگرگاه خود یعنی تکیه گاهها قرار گرفته اند, دریافت کننده نیروی کششی هستند. وزن پل و حمل و نقل روی آن سبب می شود که این کابل ها به شدت کشیده شوند. تکیه گاهها نیز تحت کشش
هستند ولی از آنجا که همانند برجها, محکم به زمین بسته شده اند, کشش موجود در آنها پراکنده می شود. تقریباً همه پلهای معلق به غیر از کابل ها از یک سامانه خرپا نیز بر خوردارند که در زیر عرشه پل قرار گرفته است (Deck
truss). این سامانه موجب استحکام بیشتر عرشه و کاهش تمایل سطح جاده به نوسان و مواج شدن می شود.
انواع پلهای معلق :
پلهای معلق به دو شکل طراحی می شوند: پل معلقی که به شکل M است و نوع کم کاربردتری که به صورت «کابل ایستاده»۶ طراحی شده که بیشتر شبیه A است. پلهای کابل ایستاده دیگر مانند پلهای معلق معمولی نیازی به
دو برج و چهار تکیه گاه ندارند.
در عوض کابلها از سمت جاده به بالای برج محکم بسته شده اند. در هر دو نوع پل, کابلها تحت کشش هستند.
نیروهای دیگر در پل :
ما در مورد دو نیروی بزرگ و مهم فشاری و کششی در طراحی پل بسیار صحبت کردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند که در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی
بستگی داشته و یا به نوع پل مرتبط است.
نیروی گشتاوری : نیروی گشتاوری نیروی چرخشی یا پیچشی و یکی از نیروهایی است که به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شکل طبیعی قوس و خرپاهای
موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد.
پلهای معلق به دلیل معلق بودن در هموا (توسط کابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است.همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند که همانند پلهای
تیری تاثیرات نیروی گشتاوری را کاهش می دهد ولی در پلهایی با طول زیاد, خرپای موجود در عرشه به تنهایی کافی نیست.
آزمون « تونل باد»۷ برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیک در سازه هاو کابلهای آویزان مورب از روش هایی هستند که برای تقلیل تاثیرات نیروهای
گشتاوری به خدمت گرفته می شود.
تشدید :
تشدید ( ارتعاش در چیزی که توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز, هماهنگ و هم موج است) نوعی نیرویی است, افسار گسیخته که می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید کننده از
میان پل به صورت امواج عبور خواهد کرد.
یک نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاکوما ناروز»۸ است که در سال ۱۹۴۰ توسط بادی با سرعت ۴۰ مایل در ساعت (۶۴ کیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد که خرپای
عرشه ناکارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا که این
امواج توانستند پل را فرو ریزند.
زمانی که یک ارتش بر روی پل رژه می رود, اغلب به سربازان گفته می شود ” قدم رو” . با این کار, ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه کافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در
نهایت می تواند پل را فرو پاشد.به منظور مقابله با تاثیرات تشدید در یک پل, خیلی مهم است که در پل کاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد کرده و از شدت آن بکاهد. ایجاد تداخل یک روش موثر در برابر امواج
مخرب می باشد.
تکنیک های کاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی, به عنوان مثال یک جاده با سطح پیوسته و یک تکه داشته باشد, یک موج قوی می تواند در امتداد پل حرکت کرده و منتقل شود. اگر جاده از تکه های مختلفی
تشکیل شده باشد و صفحات آن همدیگر را همپوشانی کرده باشند آنگاه جنبش از یک بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا که آن صفحات بر روی یکدیگر قرار گرفته اند, اصطکاک نیز ایجاد می شود. این ترفند,
اصطکاک کافی را برای تغییر فرکانس امواج مرتعش را تولید می کند. با تغییر فرکانس می توانیم از ورود امواج مخرب به سازه جلوگیری کنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد که موجب خنثی
شدن یکدیگر می شوند.
آب و هوا :
نیروی طبیعت به ویژه آب و هوا به گونه ایست که مبارزه با آن مشکل و حتی در برخی موارد امکان پذیر نیست. باران, یخبندان, طوفان و نمک هر کدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یک
مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب کنند.
طراحان پل با مطالعه و بررسی شکست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض کردند و سپس فولاد را جایگزین آهن کردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر کدام از مواد و
مصالح جدید و یا تکنیک های طراحی, ثمره درسهایی است که در گذشته آموخته اند.
با دانستن نیروی گشتاوری, تشدید و آیرودینامیک ( بعد از چند شکست بزرگ ) طراحی های بهتر نیز شکل گرفت.تا آنجاکه توانستند بر مسئله آب و هوا غلبه کنند. تعداد شکست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از
تعداد شکست ها در زمینه طراحی بوده است. این شکست ها به ما آموخته است که همواره به دنبال راه حل بهتری باشیم.
نکاتی چند در اجرای پلهای بتن مسلح:
قطع پیوستگی آرماتور دورپیچ در ناحیه تشکیل مفصل خمیری در پای ستونهای پل:
برای استهلاک انرژی زلزله آیین نامه ها اجازه می دهند نواحی از پیش تعیین شدهای در سازهها دچار تغییر شکلهای خمیری با حفظ سختی، مقاومت و شکلپذیری در چرخه های رفت و برگشتی امواج زلزله گردند. در پلها این
نواحی بطور معمول در زیر سازه (پایه ها) انتخاب می گردند. بطور خاص در ستونهای بتنی پایهها این تغییر شکلها در پای ستونها و در طول ناحیه تشکیل مفصل خمیری اتفاق می افتند.
به منظور تامین شکل پذیری لازم در مناطق با خطر لرزهای زیاد، آیین نامهها همپوشانیoverlap آرماتورهای دور پیچ در ناحیه تشکیل مفصل خمیری در پای ستون را ممنوع کردهاند. اما در شکل ذیل مشاهده می گردد که جدا از
مساله همپوشانی ، پیمانکار برای سهولت اجرا و به دلیل عدم آگاهی از این نکته اصولی، حتی آرماتورهای دورپیچ را هنگام اجرای فونداسیون درست در پای ستون قطع نموده است. انقطاع ایجاد شده باعث کاهش تنشهای
محصور کننده در پای ستون شده و عامل بسیار مهمی در کاهش قابل توجه شکل پذیری و ناپایداری پایه پل در هنگام زلزله خواهد بود.
وصله آرماتور طولی در ناحیه تشکیل مفصل خمیری در پای ستونهای پل:
بر اساس فلسفه مورد اشاره در قسمت قبل و مطابق مقررات آیین نامه ها وصله آرماتور طولی ستون فقط در ناحیه نیمه میانی ارتفاع ستون مجاز می باشد. لازم به توضیح است که حداقل طول وصله ۶۰ برابر قطر آرماتور طولی
بوده و باید ضوابط دورپیچی ویژه برای آن اعمال گردد. متاسفانه در شکل زیر مشاهده می گردد که وصله آرماتور دقیقاً در ناحیه غیر مجاز ستون قرار گرفته و آرماتورهای دورپیچ نیز در فونداسیون قطع شدهاند. موضوع اخیر از مهمترین
عوامل خرابیهای مشاهده شده در زلزله ها در اکثر نقاط دنیا می باشد.
عدم تامین طول لازم برای نشیمن تیرهای بتن مسلح پیش ساخته عرشه پل:
در پلهای متشکل از عرشه با تیرهای بتن مسلح پیش ساخته در کشورمان استفاده از تکیه گاه نئوپرن الاستومری برای نشیمن تیرها در محل کولهها و پایه ها بسیار رایج می باشد. انتظار می رود در هنگام زلزله، تغییر مکان
طولی پل به دلیل عدم وجود میرایی در این نوع نشیمنگاهها قابل توجه باشد. لذا آیین نامهها مقرر میدارند که طول نشیمن عرشه بر روی کوله و پایه پل از حداقل میزانی برخوردار باشد.
این مهم به دلیل جلوگیری از سقوط عرشه از روی کوله و پایه به داخل دهانه میباشد. متاسفانه در شکل زیر مشاهده میگردد که طول مذکور رعایت نشده است. در حالیکه این موضوع در هنگام تهیه نقشه های اجرایی و زمان
اجرای کوله به راحتی و با تامین براکت در دیواره کوله امکان پذیر بوده است.
جانمایی نادرست نئوپرن در زیر تیرهای پیش ساخته عرشه پل:
مطابق ضوابط آیین نامه ها، محور نئوپرنهای چهارضلعی به دلیل جلوگیری از اعمال فشار غیر یکنواخت خارج از محور باید بر محور تیر منطبق بوده و اضلاع آن به موازات اضلاع تیر باشند. متاسفانه در شکل زیر مشاهده می گردد که
هر دو مورد فوق در هنگام جانمایی نشیمنها رعایت نشده و نئوپرنها با خروج از مرکزیت قابل توجه نصب شدهاند. این موضوع منجر به کاهش عمر مفید بهرهبرداری از نئوپرن و ایجاد تنشهای قابل توجه در انتهای تیر می گردد.
عمل آوری نامناسب بتن عرشه و ایجاد ترکهای انقباضی:
در برخی موارد مشاهده می گردد که پیمانکاران برای عمل آوردن بتن دال عرشه از پهن نمودن گونی و مرطوب کردن آن استفاده می نمایند. در صورت وزش باد و با توجه به وجود منافذ باز در سطح گونی، در عمل رطوبت آب به
سرعت تبخیر شده و در نتیجه ترک های سطحی فراوانی در سطح دال ایجاد می گردند. شکل زیر به وضوح این مساله را نشان می دهد. ترکهای مذکور باعث نفوذ مواد خورنده به سطح آرماتورهای دال با پوشش کم شده که به
دنبال آن خوردگی آرماتور، پکیدن بتن اطراف آن و کاهش عمر مفید بهرهبرداری از پل به وقوع می پیوندد.
به عنوان یک راه حل پیمانکاران می توانند بجای گونی یا همراه آن از نایلون های پلاستیکی استفاده نمایند به طوری که بخار آب در زیر پلاستیک محبوس شده و باعث عملآوری بتن دال عرشه گردد. به علاوه عملیات بتنریزی زمانی
انجام شود که سرعت باد کم بوده و تابش شدید خورشید وجود ندارد.
اجرای نامناسب درزهای انبساط:
یکی از مساله سازترین قسمتهای پلها در زمان بهرهبرداری، درزهای انبساط پل می باشد. هر یک از ما روزانه چندین بار ضربه وارد بر اتومبیل خود را در هنگام عبور از همین درزها تجربه می نماییم . در شکل زیر یک نمونه درز
انبساط در حال اجرا نشان داده شده است. زمان اجرای درزهای انبساط بطور معمول همزمان با بتن ریزی دال می باشد، در این هنگام با توجه به دقت کم لحاظ شده در اجرای درز انبساط و همچنین عدم وجود آسفالت پوششی،
رویه درز و بتن اطراف آن دارای پستی بلندی هایی خواهد شد که در هنگام اجرای آسفالت امکان اصلاح آنها وجود نخواهد داشت. لذا توصیه می گردد محدوده درز انبساط تا زمان اجرای آسفالت پل، بتن ریزی نشده و در هنگام
اجرای آسفالت با تنظیم مناسب درز و آنگاه ریختن بتن مرحله دوم از هم تراز بودن سطح درز و آسفالت اطمینان حاصل گردد. به علاوه از اجرای درزهای فولادی با پروفیل و ورق پوششی به دلیل شکست جوشهای اتصالی و ایجاد
مشکلات فراوان احتراز شده و به جای آنها از درزهای لاستیکی مسلح استفاده شود.
اجرای نامناسب نرده های پل:
نرده های پل ها به طور معمول دارای پایه های فولادی جعبه ای شکل در فواصل معین می باشند که توسط صفحه ستون به بتن پیاده رو اتصال می یابند. در شکل زیر مشاهده می گردد که به دلیل عدم پیش بینی فاصله مناسب
بین سطح بتن نهایی و صفحه ستون به منظور گروتریزی و تنظیم آن، نصب پایه دچار مشکل شده و پیمانکار مجبور شده است از صفحات پوششی پرکننده برای تامین فاصله استفاده نماید. این موضوع باعث کاهش مقاومت پایه
فولادی در هنگام ضربه وسایل نقلیه می گردد.
به عنوان اجرای پل :
مشخصات فنی پل کارون و نحوه اجرای آن :
دهانه میانی و اصلی پل اول به صورت قوس از زیر، با دهانه قوس ۲۶۴=۲۱۲ x81+91x متر، مرکز تا مرکز مفصلها ۲۵۲ متر و خیز قوس ۴۲متر است، دو دهانه ۲۱ متری پیوسته بر روی پایههای بتنی در سمت راست و دو دهانه ۱۲ و
۱۸ متری پیوسته روی پایههای بتنی در سمت چپ آن قرار دارد و طول کل عرشه ۳۳۶ متر و عرض۸/۱۱ متر با دو خط عبور و دو پیاده رو در طرفین اجرا شده که از نظر طول دهانه قوسی که تاکنون در کشور اجرا شده است منحصر
بهفرد میباشد.
با توجه به دهانه بیش از ۱۵۰متر پل و تأکید آییننامهها و استانداردهای جهانی، پل جهت بارهای جانبی آنالیز دینامیکی شده و طیفهای زلزله ناقان و طبس مورد استفاده قرار گرفته است و حداکثر بازتابهای دینامیکی سازه از
قبیل نیروهای داخلی اعضاء، تغییر مکانها و عکسالعملهای تکیهگاهی به روش تحلیل دینامیکی تاریخچه زمانی انجام شد. برش پایه بهدست آمده برای کل سازه از روش تحلیل دینامیکی طیفی با برش پایه محاسبه شده بروش
استاتیکی معادل مقایسه و بازتابهای محاسبه شده بر اساس روشهای آییننامه زلزله ۲۸۰۰ایران اصلاح شدهاند.
بزرگترین دهانه پل زیر قوسی موجود در کشور قبلاً پل قطور بوده است که پل ارتباطی مسیر راه آهن ایران- ترکیه میباشد. این پل در حدود ۳۰ سال پیش توسط یک شرکت آمریکایی احداث گردیده است. با اتمام پروژه پل اول طرح
کارون۳، شرکت ماشینسازی اراک طراح، سازنده و نصاب بزرگترین پل قوسی کشور و زیر قوسی در خاورمیانه شده است.
در نهایت پس از اتمام عملیات نصب و تکمیل سازه منحنی قوس پل به صورت سهمی و سیستم خرپایی با ارتفاع ۸ متر و عرض ۹ متر با مقاطع قوطی شکل میباشد. چهار مقطع طولی خرپا توسط مهاربندیهای افقی و عمودی
به یکدیگر متصل و در طرفین با چهار مفصل بر روی فونداسیون قرار میگیرند به عبارت دیگر قوس بهصورت دو مفصل طراحی شده است. عرشه پل به صورت تیر مرکب با چهار شاهتیر طولی به دهانههای ۱۲، ۱۸و۲۱ متری است که
به تیرهای عرضی قاب شده و توسط ستونها برروی قوس متکی میباشد. عرشه پل به صورت دال بتنی مسلح روی تیرهای فلزی میباشد. دو درز انبساط تیپ ۱۴۰ M با قابلیت حرکت بعلاوه و منهای ۷۰ میلیمتر روی اولین
پایههای بتنی طرفین دهانه قوس قرار گرفته است که عرشه قوس را از عرشه دهانههای کناری جدا میسازد.
دو تیپ درز انبساط ساخت ماشینسازی اراک نیز دهانههای کناری را از کولهها جدا میسازد. یاتاقانهای دهانههای کناری از نوع نئوپرین تیپ۲ میباشد و یاتاقانهای عرشه قوس در طرفین و در محل درز انبساط به صورت غلطکی
طراحی و ساخته شد. که جابجایی افقی آن در امتداد عرشه به وسیله چرخ دنده و شانههای راهنما کنترل میشود.
وزن کل قطعات فولادی پل شامل عرشه، ستونها، خرپایقوسو… حدود۲۵۰۰تن و جنس تمام مواد از نوع فولاد کورتندار با مقاومت بالا میباشد.
در طرح پل، بارگذاری مطابق با نشریه۱۳۹سازمان مدیریت و برنامهریزی و آییننامه زلزله ۲۸۰۰ و بارگذاری ۵۱۹ ایران و طراحی عناصر فلزی پل مطابق با استاندارد۹۶ AASHTO صورت گرفته است. همچنین استاندارد شماره ۱۰۱۵۵
EN مطابق با DIN آلمان برای مواد کورتندار، استانداردهای۶۹۱۶، ۶۹۱۵،۶۹۱۴ DIN جهت اتصالات و استاندارد۵/۱ ASWD جهت جوشکاری و نیز استاندارد ASTM برای موارد متفرقه، ملاک عمل قرار گرفته است.
در گروه فلزی و سازه ماشینسازی اراک تیم مهندسی و طراحی تشکیل و طراحی در پاییز۱۳۸۰آغاز شد. طراحی اولیه پل اول با دهانه میانی۲۰۴متر از نوع زیر قوسی در مدت۲ماه بر اساس دادهها و نقشهبرداری انجام شده از
طرف مشاور کارفرما، انجام و برآورد مواد شده و مواد مورد نیاز سفارشگذاری شد و۶ ماه پس از طراحی عملیات ساخت نیز با موارد رزرو شده موجود در شرکت شروع شد.
اولین شوک پروژه فروردین ماه سال۱۳۸۱مبنی بر اشتباه نقشه برداری و توقف کار عملیات طراحی و ساخت طی جلسهای در تهران اعلام شد. پس از میخکوبی مجدد و نقشهبرداری در سایت دهانه اصلی و میانی پل اول به ۲۶۴
متر تغییر یافت، حدود ۵۰ متر دهانه نقشهبرداری شده کوتاه گزارش داده شده بود. پس از دو ماه کار فشرده در دو شیفت کاری، تیم طراحی مجدداً طراحی و محاسبات اولیه گزینه مورد نظر را اصلاح و روند طراحی و
محاسبات پروژه بهبود یافت.
در این زمان مواد سفارش شده قبلی به گمرک رسیده بود و این در حالی بود که طبق محاسبات جدید علاوه بر مواد خریداری شده ۶۰۰ تن مواد دیگر مورد نیاز بود. طراحی با محدودیتهای مواد موجود خریداری شده و سفارش
کسری پیگیری شد. برای جلوگیری از تأخیر در اجرای پروژه تصمیمگیری شد که از مواد رسیده برای اولویتهای اول نصب استفاده شود و مواد سفارش شده جدید برای اولویتهای انتها و آخری استفاده گردد. همزمان با ادامه
فعالیتهای طراحی و تهیه نقشههای ساخت و کنترلی، عملیات اولیه شامل قطعهزنی، برشکاری، لبهسازی، خمکاری و سوراخکاری جهت بیش از ۰۰۰،۳۶۰ ( سیصد و شصت هزار) قطعه پل در دو کارگاه عملیات اولیه ۱و۲و دو
کارگاه کمکی و به دنبال آن ساخت پس از تأخیر طولانی مجدداً آغاز شد و با توجه به توقف ایجاد شده و پر شدن ظرفیت کارگاههای پلسازی از پتانسیل کارگاههای تحت فشار، تجهیزات پروژهای استفاده شد. علیرغم مشکلات
فراوان کارگاهی و تجهیزاتی پنلهای۴ِ،۲،۱و۵ در تجهیزات پروژهای و پنلهای ۱۱، ۱۰، ۹، ۸، ۷، ۶، ۴، ۳ در پلسازی به ترتیب اولویت شروع و پیش مونتاژهای صفحهای پنلها نیز در کارگاه مذکور انجام شد.
عملیات ساخت عرشه پل اول نیز در کارگاههای سازه به همراه دیگر متعلقات پل موازات با سازههای پلسازی و تجهیزات پروژهای ادامه داشت. جهت سادگی و تسریع در عملیات نصب اتصالات اعضای اصلی به صورت ترکیبی پیچ و
مهره و جوش به طوریکه سه طرف قوطیها اتصالات اصطکاکی پیچ و مهره و بعد فوقانی آن به صورت جوش در محل طراحی شده بود.
اتصالات المانهای I شکلنیز بهصورت اتصالات اصطکاکی پیچ و مهرهای در نظر گرفته شده بود. با وجود بیش از ۰۰۰،۸۰(هشتاد هزار) پیچ در طرح پل اول، عملیات سوراخکاری و تجهیزات مورد نیاز آن در مدت زمان معین در حالتهای
مختلف یکی از گلوگاههای پروژه در هنگام ساخت بود. برای رفع این گلوگاهها سوراخکاری در سه شیفت کاری و با پنج دستگاه دریل پرتابل افقی و عمودی و چهار دریل ثابت پیگیری شد و به همت همکاران سختکوش کارگاهی و
مدیریت گروه سازنده از مهرماه۱۳۸۱عملیات پیش مونتاژ قوس و عرشه به صورت جداگانه آغاز شد. پیچیدگی اعضای اصلی قوطی شکل درهنگام ساخت، انطباق اتصالات، خم اتصالات و جمعشدن گاز در داخل قوطیها از مشکلات
دیگر ساخت پروژه بود که متأسفانه ۴ مهرماه ۱۳۸۱ سه تن از همکاران کارگاهی در اثر انفجار یکی از قوطیهای نیمه ساخت مجروح شدند.
جهت پیشمونتاژ نهایی پل به صورت خوابیده و کاهش عملیات پیش مونتاژ فضایی، پیش مونتاژهای صفحهای دو پنلی در کارگاهها در نظر گرفته شد. در این مرحله کلیه اعضای قطری سوراخکاری شده و به پیش مونتاژ صفحهای
ارسال و پس از مونتاژ و خیزگیری اعضای اصلی مطابق دیاگرام کمبر پیشبینی شده و نقشههای کنترلی تهیه شده به این مجموعه جوش شده و سوراخکاری اتصالات اصلی انجام شد. و نصف سوراخکاری اتصالات ابتدا و انتهای دو
پنل مونتاژ فضایی نهایی انجام میشد.
به علت بزرگی و حجیم بودن سازه پلو محدودیتهای سالنهای کارگاههای شرکت امکان عملیات پیش مونتاژ در آنها وجود نداشت و پیش مونتاژ در فضای باز انجام شد. عملیات پیش مونتاژ تیرهای طولی به تیرهای عرضی و
کنترل مهاربندهای عرشه و سوراخکاری اتصالات اصلی بهصورت افقی و عمودی در فضای باز بین سالنهای شرکت و با توجه به محدودیتهای تجهیزات، عوامل محیطی و جوی حدود یکسال به طول انجامید و قطعات اول اولویت
نصب آبان ماه ۱۳۸۱جهت نصب به سایت ارسال شد.
با توجه به وسعت مورد نیاز برای پیش مونتاژ قوس، مکانی به جز انبار محصول ماشینسازی اراک یافت نشد. این مکان نقشهبرداری شد که از ابتدا تا انتها در طول۲۶۴متر حدود۵/۳متر اختلاف ارتفاع وجود داشت که میبایست با
ساپورتهای مناسب تراز میشد. از آبان ۱۳۸۱ عملیات پیش مونتاژ قوس از سمت راست با توجه به اولویتهای نصب آغاز شد. و با فراز و نشیبهای فراوان پیگیری و عملیات پیش مونتاژ تحت نظارت و مدیریت شرکت به پیمانکار
واگذار شد. فضای مورد نیاز میخکوبی و مثلثبندی شده و سازههای صفحهای که در کارگاهها پیش مونتاژ و دمونتاژ شده بود در مسیرهای تعیین شده ابتدا به صورت صفحهای به دنبال هم پیشمونتاژ و منحنی آن مطابق دیاگرام
کمبر نهایی به وسیله دوربین کنترل میشد.
پس از مونتاژ صفحه زیرین صفحه فوقانی نیز روی آن مونتاژ و کنترل شده و پس از جداسازی صفحه فوقانی، این مونتاژیها با جرثقیلهای موبایل در موقعیت خود روی سازههای پیشبینی شده استقرار و کنترلهای لازم انجام
میشد. تمام اعضای مهاری و تیرهای عرضی قوس که قبلاً سوراخکاری شده بود درموقعیت خود قرار گرفته و جوش میشدند. برای کنترل و پایداری لازم و ایمنی سازه حدود ۲۰۰ تن سازه موقت و ساپورت ساخته شد. عوامل
جوی (سرمای شدید زمستان ۱۳۸۱، بارشهای زمستانی، تغییرات دمای محیط در طی شبانه روز و ماههای مختلف سال) کابلهای فشار قوی و عوامل محیطی دیگر را میتوان بهعنوان دلایلی برای کندی پیش مونتاژ ذکر کرد. که
این امر نیز به همت و تلاش تمامی همکاران و پیمانکار مربوطه در تیر ماه ۱۳۸۲ به پایان رسید. لازم به ذکر است که از سمت راست عملیات دمونتاژ قوس با توجه به اولویتهای نصب و نیاز سایت انجام و قطعات به سایت ارسال
شد.
طراحی اولیه جرثقیلهای نصب پس از بررسی و نهایی شدن پل توسط تیم مهندسی گروه فلزی و سازه جهت طراحی نهایی سازه و مکانیسمهای جرثقیل و خرید به گروه نصب و راهاندازی ارائه شد که پس از مناقصه، گروه
ماشین و مونتاژ ماشینسازی اراک جهت طراحی و ساخت انتخاب شد. و پس از طراحی نهایی مطابق آیین نامه های AISC و FEM و ساخت سازه جرثقیلها و خرید سیستمهای مکانیکی و برقی، سازه جرثقیلها توسط تیم
مهندسی پروژهها بازنگری شد و طرح نهایی بهینه شده در انبار محصول ماشینسازی اراک پیش مونتاژ و کنترلهای لازم باربری انجام شد. و پس از صحت از کارکرد جرثقیلها دمونتاژ آغاز و قطعات جراثقال به سایت ارسال شد.
ظرفیت هر کدام از جرثقیلها ۲۰ تن به عبارتی دو بار ۱۰ تن میباشد و وزن هر دستگاه حدود ۷۰ تن میباشد. سازه جرثقیلها طوری طراحی شده که چرخهای آن هنگام باربرداری روی چهار ستون پل قرار گرفته و بارها از طریق
ستونها به قوس منتقل میشود و اثرات نامطلوب انتقال بار از بینرفته یا کاهش یافته است. چهار ساپورت مفصلی جهت جلوگیری از واژگونی جراثقال در هنگام باربرداری و بارهای جانبی د ر تیرهای میانی عرشه پل تعبیه شده
است. دو دستگاه گاری حمل قطعات وظیفه قطعه رسانی از کولهها به پشت جرثقیلها را عهدهدار بود.
نظر به صعبالعبور بودن منطقه و عمق بسیار زیاد و شیب طرفین دره و عدم امکان استفاده از پایههای موقت و روشهای نصب متداول دیگر، نصب پل از اهمیت بسزایی برخوردار بود. طرح ویژه روش نصب پل با طراحی سازه پل به
صورت خودایستا و کنسول و استفاده از جرثقیلهای دروازهای ویژه که در صفحههای قبل به آن اشاره شده است، از طرفین در نظر گرفته شد. بارهای ناشی از وزن پل، جراثقالها و بارهای جانبی در مراحل نصب توسط سیستم
خرپای فضایی متشکل از عرشه پل، خرپای قوس پل و مهارهای قطری به کولهها و پاتاق منتقل میشد. تیرهای طولی در انتهای عرشه به کولهها و کولهها با سیستم انکریج و تزریق تا عمق ۲۴ متر به صورت پس تنیده به کوه
مهار شده بودند همچنین با همین روش اعضای انتهای خرپای قوس به پاتاق و پاتاق نیز به کوه مهار شده بود.
گرههای بحرانی پل، به خصوص تکیهگاههای موقت نصب که میبایست نیروهایی با مقادیر زیاد و با نوسان بارگذاری را انتقال دهند، علاوه بر روشهای کنترل شده با روش طراحی المانهای محدود Finite Element نیز مدل و آنالیز
تنش و کنترل شدند. به عنوان مثال میتوان محل اتصال کرد بالای قوس به فونداسیون و محل اتصال تیرهای عرشه به کوله در طرفین پل که در مراحل نصب با نیروی محوری کششی به ترتیب ۸۱۲ تن و ۴۵۴ تن نیرو و لنگر خمشی
۶۶ تن- متر و ۱۵ تن- متر و گرهِ محل اتصال اولین ستون فلزی به قوس را نام برد.
نصب دو تیپ ابزار دقیق بارسنج و جابجایی سنج درنقاط حساس فونداسیونها امکان کنترل تغییرات وضعیت بارگذاری و جابجاییهای ایجاد شده در عمقهای۱۲، ۶ و ۱۸ متری پیها را نشان داده و پل در مراحل مختلف نصب تحت
کنترل با ضریب ایمنی مناسبی قرار داشت. عرشههای دهانه کناری به روش روانسازی در موقعیت خود قرار گرفت و جرثقیلهای دروازهای پس از مونتاژو ریلگذاری در روی پلت فرمهای پیشبینی شده و تقویت عرشه روی پایههای
بتنی طرفین دهانه قوس که جرثقیل بتواند روی کنسول قرار گیرد، روی تیرهای عرشه نصب شده انتقال یافت و آماده نصب قوس شد.سازه جرثقیلها طوری طراحی شدهاند که امکان نصب۱۲متر سازه به صورت کنسول در جلوی
خود را داشته باشد به عبارتی بتواند یک پانل شامل قطعات اصلی، اعضای قطری، تیرهای عرضی، مهاربندهای قوس، مهارهای قطری، ستونهای انتهای پنل، تیر عرضی، تیرهای طولی و مهاربندهای عرشه را نصب کند و پس از
تکمیل یک پانل و ریلگذاری روی آن جرثقیل۱۲متر به جلو حرکت کرده و این مراحل تا پایان نصب پانل۱۰ از طرفین ادامه داشت.
عطف به توضیحات داده شده مشخص میگردد که در هر ۱۰ مرحله نصب مشخصههای سازه خرپایی فضایی اشاره شده تغییر نموده و سازهای جدید میشود بنابراین تا این مرحله از هر سمت۱۰ سازه متفاوت و خود ایستا
میبایست آنالیز و نتایج به دست آمده برای نیروهای داخلی اعضاء عکسالعملهای تکیهگاهی و تغییر مکانهای هر مرحله با مراحل قبلی جمعبندی گردد.
نظر بر اینکه پارامترهای هر کدام از مدلهای سازه مراحل نصب تغییر نموده و مدل قبلی تحت بار تنش میباشد، نتایج حاصل ا ز هر۱۰مدل سازه را نمیتوان با هم جمع نمود. در نتیجه حجم عملیات محاسباتی و کنترلهای لازم
بسیار بالا رفته و نیاز به روش، راهکار مناسب، دقت و کنترلهای فراوان دارد تا همانند آنچه که د رپروسه و ترتیب نصب قطعات انجام میشود، محاسبات نیز در نظر گرفته شود. درهر۱۰ مدل محاسباتی خرپای نیم قوس بهطورکامل
وجود داشت ولی ستونها، عرشه و مهارهای قطری هر مدل مطابق با قطعات نصب شده بود و قسمت اضافه سازهِ خرپای قوس بدون وزن مدل میشد و در هر مدل وزن قسمتهای مشترک با مدل مراحل قبل غیر فعال و وزن
قسمت نصب شدهِ جدید فعال و نتیجه آنالیز حاصل با نتایج آنالیز مرحله قبل جمع میشد.
بازتابهای نیرویی جهت طراحی و کنترل اعضا و بازتابهای عکسالعملها جهت طراحی و کنترل تکیهگاهها و بازتابهای تغییر مکانها قسمتی از دیاگرام کمبر ساخت پل را تشکیل میدهد.
نصب سازه پل بهصورت خود ایستا و کنسول(تا طول یکصدوبیست و شش متر) از طرفین تا پانل مرکزی با تمام مشکلات و مسایل خاص خود بهصورت مستقل ادامه داشت. از آنجا که در طول شبانهروز فاصله بین دو کنسول حدود
۱۲سانتیمتر، تراز ارتفاعی آنها حدود ۳ سانتیمتر و تابیدگی دو مقطع انتهای کنسولها تقریباً تا ۵ سانتیمتر میرسید و همچنین تغییرات ذکر شده در هیچ دوره زمانی ثابت نبود و در هر لحظه محسوس و قابل مشاهده بود،
ارتباط و اتصال دو کنسول نیاز به محاسبات دقیق و تدابیر ویژهای داشت که نتایج عواملی چون نحوه و تابش مستقیمآفتاب، دامنه تغییرات دما و باد بود و همچنین انحراف ناشی از هنگام ساخت و نصب از سوی دیگر باعث افزایش
انحرافات مطرح شده میشد. بهعنوان مثال، انحراف از محور طولی پل برای هر دو کنسول به ۲۵ سانتیمتر میرسید.
طبق بررسیها و محاسبات دقیق نتیجهگیری شد که اتصال دو کنسول به همدیگر الزاماً در یک دوره زمانی بسیار کوتاه انجام شود بنابراین میبایست هر دو سازه را بهطور موقت با استفاده از مفصلهایی به هم متصل کرد. پس از
طراحی و محاسبات مفصلهای مورد نظر، این اتصالات قطعهزنی و در دو انتهای قطعات پانلهای ۱۰ و مرکزی مونتاژ، جوش و کنترلهای لازم انجام شد و تا زمانی که پینهای اتصالات در جای خود قرار نمیگرفت آزادی حرکات سازه
دو کنسول د رمرکز مهار نشده بود. برای نصب قطعات پانل مرکزی یکی از جرثقیلها روی پنل ۱۰ قرار گرفت و کل قطعات پنل مرکزی مونتاژ، جوش و کنترلهای لازم انجام گرفت.
با این وضعیت سازه پل از یک طرف به طول ۱۲۶ متر و از طرف دیگر ۱۳۸ متر کنسول بود.
پس از اصلاح انحرافات ایجاد شده با سیستم جکینگ، اتصالات مفصلی موقت با توجه به محاسبات دقیق در زمان تعیین شده توسط پینها قفل شدند. بلافاصله در ناحیه اتصالات موقت، اتصالات دائمی در سه طرف اعضای اصلی
قوطی شکل تکمیل شد. چون این اتصالات ظرفیت باربری لازم را داشتند، اتصالات موقت باز شده و باقیمانده اتصالات اصلی کامل شد. با اتصال سازههای دو کنسول و یکپارچه شدن آنها سازه اصلی قوس تشکیل شد که
پارامترهای سازهای بهطور کلی تغییر یافته و سیستم سازهای از خرپای فضایی کنسولی یک سرگیردار تبدیل به یک قوس خرپایی بدون مفصل میشود که در تکیهگاههاگیردار بوده و تحت تنشهای حین مراحل نصب قرار گرفته
است.
در این مرحله نیز مدلهای لازم و محاسبات ویژه و خاصی عطف به نکات مطرح شده در طراحی قوسهای بدون مفصل انجام شد.
با بررسی اجمالی از مطالب فوق درمییابیم که سیستم سازهای پل طی مراحل مختلف از شروع نصب تا راه اندازی تغییرات اساسی نموده است، یعنی ابتدا ۱۱خرپای فضایی کنسول یک سرگیردار، سپس یک قوس تک مفصلی در
راس و بهدنبال آن یک قوس دو سرگیردار و نهایتاً بهصورت یک قوس دو مفصلی مورد آنالیز و طراحی قرار گرفت.
یکی دیگر از مراحل بسیار مهم، حساس و کلیدی در طراحی و اجرای پل، مرحله آزادسازی تکیهگاههای موقت و مهارهای قطری بین عرشه، قوس و ستونهای فلزی پس از نصب و تکمیل خرپای قوس و قبل از نصب و اتصال اسکلت
فلزی عرشه در پانل مرکزی میباشد، در صورتی که به شکل اصولی و تحت کنترل اجرا نشود، ضربهها و شوکهای بسیار بالایی به پل وارد میشود که موجب بالارفتن تنشهای موضعی در برخی نقاط از سازه شده و با ایجاد
گسیختگی باعث فرو ریختن پل میشود.
آزاد سازی تکیهگاههای موقت را میتوان با در نظر گرفتن عواملی چون مکانیسم اجرا، تجهیزات و امکانات مورد نیاز، نیروی انسانی، سرعت کاهش نیرو از تکیهگاهها و انتقال آن به سازه، آزادسازی تمام موانع و قیدهای ایجاد شده
در مراحل نصب، نظارت دقیق و بازدیدهای مداوم از نقاط بحرانی سازه و تجزیه و تحلیل آن و ادامه روند پیشرفت کار مورد بررسی و تحلیل قرار داد. نحوه و توالی sequence آزادسازی کل سیستم و موضعی در هر یک از تکیهگاههای
موقت یکی از موارد فوق محسوب میشوند که بررسی و تحلیل آن از اهمیت بیشتری برخوردار است.
برای این فعالیت مدلهای متعددی تهیه و آنالیز شد که ترتیب آزادسازی از یک مکان شروع و تا پایان آن ادامه مییافت و در هر مدل پس از آزادسازی قسمتی یا تمامی نیروها، افزایش و یا کاهش نیرو در نقاط دیگر سازه و تکیههای
موقت مورد بررسی قرار میگرفت و با جمع بندی نهایی بهترین گزینه حاصل شد.در این گزینه ابتدا نیروهای کردهای Chord بالایی یک سمت پل، در مرحله دوم نیروهای کردهای بالایی سمت دیگر پل، آنگاه نیروهای تیرهای انتهای
عرشه اتصال به کوله در یک سمت پل، سپس نیروهای تیرهای انتهای عرشه اتصال به کوله در سمت دیگر پل آزاد و در مرحله پایانی مهارهای قطری که نیروهای آنها به شدت کاهش یافته بود آزاد و دمونتاژ شد.
در آزاد سازی نیروهای کردهای بالای هر سمت نیز ابتدا نیروی انکرهای کرد اول از مقدار۱۲۰تن تا میزان۸۰ تن مطابق توالی نشان داده شد در نقشههای پستنیدگی کاهش یافت و همین توالی برای کرد دوم تکرار شد و بقیه
نیروهای موجود در انکر کردها همانند توالی قبل و در دو مرحله تا به میزان ۴۰ تن و صفر کاهش یافته و رهاسازی این مرحله به اتمام رسید.
برای تیرهای عرشه متصل به کوله در هر سمت نیروی انکرهای هر تیر در مرحله اول از ۶۵ تن تا به میزان ۴۰ تن و در مرحله دوم تا ۲۰تن و در مرحله سوم به صفر کاهش یافته و آزادسازی آنها به اتمام میرسد. در عرشه با توجه
به جابجایی که بین کوله و تیرها در مرحله آزادسازی بهوجود میآید و نیروگرفتن مجدد انکرها، حجم عملیات آزادسازی در هر سه مرحله بهویژه مرحله پایانی بالا میرود.
در مدت یک هفته کلیه عملیات آزادسازی به پایان رسید و پس از نصب تیرها و مهاربندیهای عرشه پنل مرکزی، تعویض تکیهگاههای موقت عرشه دهانههای کناری طرفین پل با یاتاقانهای دائمی(اصلی) و برش و تعبیه درز انبساط
بین عرشه قوس و دهانههای کناری عملیات نصب سازه فلزی پل پایان یافته و سازه پل بهصورت قوس خرپایی دو سر مفصل تبدیل و آماده دالگذاری، آرماتوربندی و بتنریزی عرشه شد.
زمان پیشبینی شده برای اجرای کامل پروژه شامل طراحی و مهندسی، تهیه و تدارک مواد، ساخت، پیشمونتاژ و نصب ۲۰ ماهه بود، علیرغم مشکلات و تغییرات بهوجود آمده در بخش مهندسی تامین مواد و ساخت تاخیرات ایجاد
نشد و با همزمان نمودن اکثر فعالیتها، عطف به توضیحات و تدابیر اشاره شده در سرفصلهای قبلی، قطعات مورد نیاز در زمانهای تعیین شده آماده و جهت نصب به سایت ارسال شد.
با توجه به اینکه در بخش نصب نمیتوان برنامه زمانبندی مستقلی همانند فعالیتهای طراحی، تأمین مواد و ساخت ارائه نمود از اینرو برای ارائه یک برنامه زمانبندی صحیح و مستقل از فعالیتهای قبلی برای دوره نصب برنامه
زمانبندی پیمانکار سیویل که فعالیتهای آن پیشنیاز فعالیتهای نصب سازه فلزی پروژه است می بایستی با برنامه زمانبندی نصب قطعات فلزی پل هماهنگی داشته باشد. یکی از دلایل مهم تاخیردر شروع عملیات نصب و
پیشرفت پروژه عدم تحویل جبهههای کاری برای شروع عملیات نصب بود.
عواملی از قبیل عدم تحویل همزمان جبهههای کاری طرفین پل، تداخل فعالیتهای پیمانکارسیویل و پیمانکار نصب سازه در شروع، تازگی نوع کار و تجربه اول که به دنبال آن زمان زیادی را در دورهای اولیه نصب قطعات و تنظیمات
لازم و همچنین در پانل مرکزی گرفت، نیاز به پرسنل آموزش دیده و متخصص که توانایی کار در ارتفاع را داشته باشد و با سیستم های صخرهنوردی بتواند به نقاط مختلف سازه دسترسی داشته و فعالیتهای لازم را انجام دهد
(پرسنل در حین کارآموزش دیدند)، ابهامات و مشکلات قراردادی، اشکال در تجهیزات نصب برای پانلهای ابتدایی ۱و ۲وکوتاه بودن سیم بکسلها، اشکال در سیستم برقی جرثقیلها و اصلاح آن، دشواری و زمان بر بودن تأمین
ابزارآلات نصب و لوازم یدکی آنها، سقوط ابزارآلات و اتصالات، تعداد زیاد پیچ و مهرهها ونیاز به ابزارآلات خاص برای مکانهای مختلف در سازه، پوشش گالوانیزه به روش الکتریکی در اتصالات و حمل و نقل آن، محدودیتهای جادههای
دسترسی و پلتفرمها که باعث سختی جرثقیلها و طولانی شدن آن و نیاز به کشنده و هلدنده برای انتقال بار از جاده دسترسی، تغییرات در سیستم مهار به کوه واصلاح سازه در سایت، تقویت گرهها در هنگام نصب، عدم وجود
یک کمیته فنی متشکل از نمایندگانی از سازمانهای ذیربط و مستقر در سایت که تعهد و مسئولیت در قبال پروژه داشتند، پراکندگی در خدمات مشاورهای، عدم هماهنگی بین پیمانکاران، مدیریت نامتمرکز و پراکنده، باعث تأخیر و
طولانی شدن مدت زمان پروژه شد. برای دستیابی به زمان برنامهریزی شده کارفرما جهت بهرهبرداری پروژه سد و نیروگاه طرح کارون ۳ که هزینه بسیار بالایی برای آن صرف شده بود و در صورتی که آبگیری سد در موعد مقرر انجام
نمیپذیرفت به مدت یکسال بهرهبرداری سد به تعویق میافتاد که باعث راکد ماندن سرمایه صرف شده و عدم تولید نیروی برق و سودآوری پروژه میشد لذا بهرهبرداری از این پلها جهت حفظ و ارتباط جاده خوزستان- شهرکرد یکی
از عوامل اصلی امکان راهاندازی سد و نیروگاه آن بود به همین دلیل عملیات نصب پل با افزودن شیفت کاری شبانه در طرفین پل تسریع شد.
دهانه اصلی و میانی پل دوم نیز بهصورت قوس از زیر با دهانه قوس ۱۷۷=۲۰+۱۲۱۲+۵ x21+61+5x متر، مرکز تا مرکز مفصلها۵۹/۱۵۸متر، خیز قوس ۴۰ متر است دو دهانه ۱۹ و ۲۰ متری پیوسته و متصل به عرشه قوس بر روی
پایههای بتنی قرار دارد و طول کل عرشه ۲۱۶ متر و عرض۸/۱۱ متر با دو خط عبور و دو پیاده رو در طرفین مطابق پل اول اجرا شده است